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Renormalisation group treatment of a random Potts model with 
different numbers of Potts spin states 

M C Marques, M A Santos and J M B Oliveira 
Laboratorio d e  Fisica, Faculdade d e  Citncias ,  Universidade d o  Porto, 4000 Porto, Portugal 

Received 16 February 1987 

Abstract. The mean-field renormalisation group method is used to study a random Potts 
model which consists of a mixture of p-state and  q-state Potts spins.  The  Hamiltonian is 
written in terms of a critical and a non-critical variable. The concentration dependence 
of the critical temperature and non-critical parameter is determined. 

The critical behaviour of the q-state Potts model has been the subject of much 
investigation in recent years (Wu 1982). It is known that for 9 s  q , ( d )  this system 
undergoes a second-order phase transition with q-dependent values of  the critical 
exponents which describe the statics and dynamics of the approach to criticality. 

Various aspects of random Potts models, including the dilute system, have also 
heen studied (Kinzel and Domany 1981). A different generalisation to a random model 
which consists of two types (p-state and q-state) of Potts spins was considered by 
Miyazima (1984). This is of particular interest since i t  enables one to study the crossover 
between the critical behaviour of the q-state Potts model and the critical behaviour of 
the p-state Potts model as the concentration of both types of spins is varied. 

In  this work we apply the mean-field renormalisation group ( M F R G )  technique 
(Indekeu et al1982) to go beyond the mean-field-like approximation used by Miyazima. 

The Hamiltonian for the random system with a concentration .Y (1 - x )  of p ( 4 ) -  
component Potts spins can be written, for p >  9 :  

- p Z = K  E (  f qrPfrl,P:+ [ ( l - v , ) p ! ( l - v , ) I ' :  
( t i ,  h ~ I h I  

where 9, takes the value 1 ( 0 )  with probability .Y ( 1  - - S I  i f  site i is occupied by a 
p(q)-component Potts spin, and P f ( p : )  is the projection operator onto the kth state 
of  the p(  4)-component Potts spin. The summation is over the nearest-neighbour pairs 
and each spin is surrounded by 2 neighbours. 

Let us assume that, below the transition temperature, broken symmetry corresponds 
to ordering of the first Potts state ( k  = l ) ,  whereas ordering does not distinguish between 
the ( 9  - 1)  states of a q-component Potts spin or the remaining ( p - 4 )  states of a 
p-component Potts spin. This suggests the use of parameters s and t in the following 
way: 

( P I ) =  ( i / q ) [ i  + ( 4  - i ) s ] t  

( P ' ) = ( I / ~ ) ( I - - . Y ) ~  ( I 'h )  = ( I /  4 1 - s ) for 1 < k~ 4 

(F') = ( l / q ) [  1 -t ( 4  - 1 )SI 
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where ( ) means a thermodynamic average. ( P A )  ( ( P k ) )  represents the fraction of 
p (  9)-component Potts spins occupying state k. 

In  the mean-field approximation each spin is subjected to a field which is the 
thermodynamic (( )) and configurational (-) average of the field created by its neigh- 
bours. Within this approximation the first term of -/3X in (1) is written as 
( K  z / 2 )  Et v,P:v,( P:), and a similar procedure applies to the other terms, resulting 
after some rearrangement in 

-PXwF = f K z  2 [ -&[ v,R, + ( 1 - 7,) .irfl[xR + ( 1 - x)  T I  

+A( r],p, + (1 - .J”)( xp + (1 - x)- p - 9 )  +;] 
4 ( P - 9 )  P P 

where the concentration dependence arises from the configurational average and 
9 

RI = P,‘ - t , / q  t , =  P :  P!= t l -q /P  7r; = P ;  - I / q  

vARJ = xR ( l - v , ) ( d ) = ( 1 - x ) 7 r  v t ( P J  = X P  

7r = [ ( q  - l ) / q l s  P =  t-q/P.  

k = l  

- 

Equation (3 )  can be written in a more condensed form as 

d P  - 4 )  

with 

(3 )  

9, = 7 3 ,  + (1 - v , ) r 1  9, = 7, PI + ( 1 - 71 )(P - 9 ) / P  

and where hQ is the field conjugate to the critical parameter Q and h ,  is the field 
conjugate to the non-critical parameter 9. 

As a matter of fact, the vanishing of order means in  this case that state 1 can no 
longer be distinguished from the ( q  - 1) other states of a q-component spin; therefore 
at the critical point one must have R = 7r = 0. As for p, it measures the deviation of t 
(the fraction of occupied states in the first group of q states of a p-component spin) 
from the value q / p  that it would take when the group of q states cannot be distinguished 
from the remaining ( p  - 9)  states and they are all occupied with probability l l p .  This 
can only happen when all the sites are occupied by p-component Potts spins, i.e. when 
x = 1. Therefore p is only critical in this limit, when the model becomes the pure 
p-state Potts model. 

The method of MFRG is based on a comparison of the behaviour of two clusters 
of different size; the interactions within the clusters are treated exactly and the effect 
of surrounding spins is simulated by a mean field which is supposed to scale in the 
same way as the magnetisation of the cluster. We consider here the simple choice of 
one- and two-site clusters. 

The Hamiltonian for the one-site cluster is 

where h, = zKCQ,  h = zKC,. 



Renormalisation group treatment of a random Potts model 5703 

The mean-field equations are obtained by setting C ,  = (91>, Cy = m. The Hamil- 
tonian for the two-spin cluster is 

/ U  a 

k =  I k = l  

where h b  = K ' ( z  - l )Cb ,  h:P = K ' (  z - 1)C;. 
The critical properties of the model are now obtained by assuming that m1 and 

;COl + Q2)11 scale like the symmetry breaking fields C, and C b  which, in the vicinity 
of a second-order phase transition, can be considered very small. We obtain 

26 + ( q  -2)6+ ( p  - q ) C  

4 6 + 2 ( q  - 2 ) 6 + ( p  - q ) C  
+ x ( l - x )  - 

qa + q(  q - 1 )6+ q(  p - 4 )  C qa + 4 ( 4  - 1)" 
where 

ii = exp[ K '( 1 + 2 h ' p /  q )]  

a? = exp[K'h >( p - 2q)/ q(  P - q)1 

Z=exp[-2K'hfP/(p-q)] .  

As for the non-critical parameter we treat i t  in a self-consistent way (C, =O1) 
and assume C ,  = CIp (de Alcantara Bonfim and S i  Barreto 1985, Plascak and Sa 
Barreto 1986). 

The fixed-point equation obtained from the scaling relation by imposing K ' =  K,  
x' = x is then 

6 = exp(2 K ' h f p /  q )  

d = exp{ K ' [  1 - 2 h ' , / (  p - q ) ] )  

X 

2a+ ( q  -2)b-t  ( p  - q ) c  

4 a  + 2 ( q  -2)b + ( p  - q ) c  
qa + q ( 4  - l ) b +  q ( p  - q ) c  

2 a  + ( q  - 2)b 
qa + 4 ( 4  - 1)b 

+x(l-x) 

together with 
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where 

a = exp{ K + 2K[(z  - l) /q]C,} 

c = exp{K ( z  - 1 I[( p - 2q) /  q( P - q ) l  CPI 

d =expIK - [ ~ / ( P - ~ ) I ( ~ - ~ ) C S K }  e = e x p I - 2 K [ ( z - l ) / ( p - q ) l C , } .  

b =exp{2K[(z - l)/q]C,} 

Equation (9) yields the phase diagram in the temperature/concentration space. 
In figure 1 we have plotted 1/ K,( x)  T,( x)  against concentration for z = 4, p = 3, 

q = 2. As expected, the transition temperature decreases monotonically from the value 
predicted by the method for x = 0 (pure q-state Potts model, in this case the pure Ising 
model) to the value predicted for x = 1 (pure p-state Potts model). As shown previously 
(Indekeu et a1 1982, Marques and Santos 19861, the results of MFRG considerably 
improve the mean-field estimates. 

The case z = 4, p = 6, q = 3 is represented in figure 2. Mean-field approximation 
predicts a first-order phase transition for the Potts model with q > 2, independently of 
the dimensionality; this agrees with the work of Miyazima (1984) who locates a line 
of first-order phase transitions in this case. On the other hand, it is known from exact 
results that in two dimensions the q-state Potts model undergoes a second-order phase 
transition for q =s qJ2) = 4, so there must be a certain concentration in this random 
Potts model for which the phase transition changes order. The present MFRG method 
is only justified in the case of second-order phase transitions. Nevertheless (Indekeu 
et a1 1982, Marques and Santos 1986), and as can be seen in figure 2, the estimates it 
gives for the location of critical couplings in cases q > qc( d )  are still good as compared 
to the mean-field calculation; we therefore think the phase diagram we have obtained 

I 

1 . 5  c 
L o t -  * 

Figure 1. Transition temperature of random Potts model against concentration for z = 4, 
p = 3, q = 2, in the present approximation. Mean-field predictions for x = 0 (pure Ising 
model) and x = 1 (three-state Potts model) are indicated by 0, and exact results by 0.  
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Figure 2. Transition temperature against concentration for z = 4, p = 6, 9 = 3, as given by 
the present MFRG calculation and the mean-field ( M F )  calculation of Miyazima (1984). 
The full circles represent exact results. 

for this model within this approach represents an improvement on Miyazima’s mean- 
field calculation. 

In figure 3 we have plotted the variation of p as a function of concentration along 
the transition line. The physically expected behaviour near x = 1, when p becomes 
critical, is recovered. 

In conclusion, for the sake of the use of the MFRG method, we have reduced the 
random Potts model with two types of Potts spins to a model with a critical and a 
non-critical variable. The use of the method has enabled us to obtain a better estimate 
for Tc(x ) .  

As remarked before (Indekeu er a1 1982) this method gives critical exponents which 
are generally less accurate than the critical couplings, even though this can be improved 

V 

X 

Figure 3. Variation of p with concentration along the transition line for z = 4, p = 3, 9 = 2. 
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by the use of bigger clusters. In the limit x = 0 (corresponding to the Ising model) an  
estimate for the critical exponent was obtained ( v  = 1.65) which agrees with previous 
work (Marques and Santos 1986). A complete study of the crossover displayed by v 
has, however, proved less successful within the present approach, leading to the sort 
of pathological behaviour already seen in the study of other models (Slotte 1984, 
Plascak and  SA Barreto 1986). This is probably due  to the assumption implicit in (9). 

It might well be possible to overcome this difficulty by using a different RG method 
applied to the Hamiltonian of the model in the form presented here. The study of 
other critical exponents, namely the dynamical critical exponent z which has been the 
subject of recent investigations (Lage 1986), would be of great interest. Ways of 
overcoming the problem concerning the order of the transition are presently being 
investigated. 
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